首页

学术预告

当前位置: 首页 > 学术预告 > 正文

Griesmer Bound and Constructions of Linear Codes in b-Symbol Metric

发布日期:2025-09-25    作者:     来源: 院科研办     点击:

报告名称:Griesmer Bound and Constructions of Linear Codes in b-Symbol Metric

报告专家:罗高骏

专家单位:南京航空航天大学

报告时间:9月26日14:30

报告地点:双创大楼10楼A1009会议室

专家简介:罗高骏,南京航空航天大学数学学院副研究员,硕士生导师。2019年于南京航空航天大学获得理学博士学位(导师:曹喜望教授),随后在新加坡南洋理工大学从事博士后研究(导师:Ling San教授)。2024年入选江苏省特聘教授,主要研究领域为代数编码、量子信息、通信系统中序列设计和分布式系统,在《IEEE Transactions on Information Theory》、《IEEE Transactions on Communications》、《Designs, Codes and Cryptography》等领域顶级、权威期刊发表学术论文60余篇。2017年参与的序列设计工作荣获江苏省科学技术奖。自2022年起担任期刊《Computational and Applied Mathematics》(JCR Q1)的编委。主持国家自然科学基金委青年项目、江苏省自然科学基金委青年项目。

报告摘要:The b-symbol metric is a generalization of the Hamming metric. Linear codes in the b-symbol metric have been used in the read channel whose outputs consist of b consecutive symbols. The Griesmer bound outperforms the Singleton bound for Fq-linear codes in the Hamming metric, when q is fixed and the length is large enough. This scenario is also applicable in the b-symbol metric. Shi, Zhu, and Helleseth recently made a conjecture on cyclic codes in the b-symbol metric. In this paper, we present the b-symbol Griesmer bound for linear codes by concatenating linear codes and simplex codes. Based on cyclic codes and extended cyclic codes, we propose two families of distance-optimal linear codes with respect to the b-symbol Griesmer bound.

上一条:Several families of binary minimal linear codes with few weights from two-to-one functions
下一条:Large sets of sequences with optimal correlation and low PAPR

返回顶部